Friday, December 5, 2025
This Big Influence
  • Home
  • World
  • Podcast
  • Politics
  • Business
  • Health
  • Tech
  • Awards
  • Shop
No Result
View All Result
This Big Influence
No Result
View All Result
Home Tech

Shrinking Vacuum Pumps for Bigger Discoveries

ohog5 by ohog5
June 3, 2023
in Tech
0
Shrinking Vacuum Pumps for Bigger Discoveries
74
SHARES
1.2k
VIEWS
Share on FacebookShare on Twitter


3D Print Miniaturized Peristaltic Vacuum Pump

MIT researchers have devised a solution to 3D print a miniaturized peristaltic vacuum pump, which could possibly be a key part of a transportable mass spectrometer. Credit score: Courtesy of the researchers

The system could be a key part of a transportable mass spectrometer that would assist monitor pollution, carry out medical diagnoses in distant areas, or check Martian soil.

MIT researchers have used additive manufacturing to create a small, inexpensive vacuum pump that could lead to the development of portable mass spectrometers. The 3D printed mini peristaltic pump, designed with a hyperelastic material tube featuring notches, overcomes traditional design issues, reduces heat, and increases the device’s lifespan. This could enable monitoring of pollutants or medical diagnoses in remote areas, and soil testing on Mars.

Mass spectrometers are extremely precise chemical analyzers that have many applications, from evaluating the safety of drinking water to detecting toxins in a patient’s blood. But building an inexpensive, portable mass spectrometer that could be deployed in remote locations remains a challenge, partly due to the difficulty of miniaturizing the vacuum pump it needs to operate at a low cost.

MIT researchers utilized additive manufacturing to take a major step toward solving this problem. They 3D printed a miniature version of a type of vacuum pump, known as a peristaltic pump, that is about the size of a human fist.

Their pump can create and maintain a vacuum that has an order of magnitude lower pressure than a so-called dry, rough pump, which doesn’t require liquid to create a vacuum and can operate at atmospheric pressure. The researchers’ unique design, which can be printed in one pass on a multimaterial 3D printer, prevents fluid or gas from leaking while minimizing heat from friction during the pumping process. This increases the lifetime of the device.

3D Printed Vacuum Pump

This device, which is only the size of a human fist, performed better than other types of pumps at creating and maintaining dry vacuum, which is key for enabling a mass spectrometer to effectively determine the molecules in a sample. Credit: Courtesy of the researchers

This pump could be incorporated into a portable mass spectrometer used to monitor soil contamination in isolated parts of the world, for instance. The device could also be ideal for use in geological survey equipment bound for Mars, since it would be cheaper to launch the lightweight pump into space.

“We are talking about very inexpensive hardware that is also very capable,” says Luis Fernando Velásquez-García, a principal scientist in MIT’s Microsystems Technology Laboratories (MTL) and senior author of a paper describing the new pump. “With mass spectrometers, the 500-pound gorilla in the room has always been the issue of pumps. What we have shown here is groundbreaking, but it is only possible because it is 3D-printed. If we wanted to do this the standard way, we wouldn’t have been anywhere close

Velásquez-García is joined on the paper by lead author Han-Joo Lee, a former MIT postdoc; and Jorge Cañada Pérez-Sala, an electrical engineering and computer science graduate student. The paper was published recently in Additive Manufacturing.

Pump problems

As a sample is pumped through a mass spectrometer, it is stripped of electrons to turn its atoms into ions. An electromagnetic field manipulates these ions in a vacuum so their masses can be determined. This information can be used to precisely identify the constituents of the sample. Maintaining the vacuum is key because, if the ions collide with gas molecules from the air, their dynamics will change, reducing the specificity of the analytical process and increasing its false positives.

Peristaltic pumps are commonly used to move liquids or gases that would contaminate the pump’s components, such as reactive chemicals. They are also used to pump fluids that need to be kept clean, like blood. The substance being pumped is entirely contained within a flexible tube that is looped around a set of rollers. The rollers squeeze the tube against its housing as they rotate. The pinched parts of the tube expand in the wake of the rollers, creating a vacuum that draws the liquid or gas through the tube.

While these pumps do create a vacuum, design problems have limited their use in mass spectrometers. The tube material redistributes when force is applied by the rollers, leading to gaps that cause leaks. This problem can be overcome by operating the pump rapidly, forcing the fluid through faster than it can leak out. But this causes excessive heat that damages the pump, and the gaps remain. To fully seal the tube and create the vacuum needed for a mass spectrometer, the mechanism must exert additional force to squeeze the bulged areas, causing more damage, explains Velásquez-García.

An additive solution

He and his team rethought the peristaltic pump design from the bottom up, looking for ways they could use additive manufacturing to make improvements. First, by using a multimaterial 3D printer, they were able to make the flexible tube out of a special type of hyperelastic material that can withstand a huge amount of deformation.

Then, through an iterative design process, they determined that adding notches to the walls of the tube would reduce the stress on the material when squeezed. With notches, the tube material does not need to redistribute to counteract the force from the rollers.

The manufacturing precision afforded by 3D printing enabled the researchers to produce the exact notch size needed to eliminate the gaps. They were also able to vary the tube’s thickness so the walls are stronger in areas where connectors attach, further reducing stress on the material.

Using a multimaterial 3D printer, they printed the entire tube in one pass, which is important since postassembly can introduce defects that can cause leaks. To do this, they had to find a way to print the narrow, flexible tube vertically while preventing it from wobbling during the process. In the end, they created a lightweight structure that stabilizes the tube during printing but can be easily peeled off later without damaging the device.

“One of the key advantages of using 3D printing is that it allows us to aggressively prototype. If you do this work in a clean room, where a lot of these miniaturized pumps are made, it takes a lot of time and a lot of money. If you want to make a change, you have to start the entire process over. In this case, we can print our pump in a matter of hours, and every time it can be a new design,” Velásquez-García says.

Portable, yet performant

When they tested their final design, the researchers found that it was able to create a vacuum that had an order of magnitude lower pressure than state-of-the-art diaphragm pumps. Lower pressure yields a higher-quality vacuum. To reach that same vacuum with standard diaphragm pumps, one would need to connect three in a series, Velásquez-García says.

The pump reached a maximum temperature of 50 degrees Celsius, half that of state-of-the-art pumps used in other studies, and only required half as much force to fully seal the tube.

“Fluid movement is a huge challenge when trying to make small and portable equipment, and this work elegantly exploits the advantages of multimaterial 3D printing to create a highly integrated and functional pump to create a vacuum for gas control. Not only is the pump smaller than pretty much anything similar, but it generates vacuum 100 times lower as well,” says Michael Breadmore, professor in analytical chemistry at the University of Tasmania, who was not involved with this work. “This design is only possible by the use of 3D printers and nicely demonstrates the power of being able to design and create in 3D.”

In the future, the researchers plan to explore ways to further reduce the maximum temperature, which would enable the tube to actuate faster, creating a better vacuum and increasing the flow rate. They are also working to 3D print an entire miniaturized mass spectrometer. As they develop that device, they will continue fine-tuning the specifications of the peristaltic pump.

“Some people think that when you 3D print something there must be some kind of tradeoff. But here our group has shown that is not the case. It really is a new paradigm. Additive manufacturing is not going to solve all the problems of the world, but it is a solution that has real legs,” Velásquez-García says.

Reference: “Compact peristaltic vacuum pumps via multi-material extrusion” by Han-Joo Lee, Jorge Cañada and Luis Fernando Velásquez-García, 21 March 2023, Additive Manufacturing.
DOI: 10.1016/j.addma.2023.103511

This work was supported, in part, by the Empiriko Corporation.





Source link

You might also like

“This Chat’s Kind of Dead. Anything Going On?”

New COVID vax formula produces antibodies nearly 3X longer

The Louisiana Department of Wildlife and Fisheries Is Detaining People for ICE

Tags: BiggerDiscoveriesPumpsShrinkingvacuum
Share30Tweet19
ohog5

ohog5

Recommended For You

“This Chat’s Kind of Dead. Anything Going On?”

by ohog5
December 5, 2025
0
“This Chat’s Kind of Dead. Anything Going On?”

Kevin Dietsch / Getty Photos Because the nation reels over Pete Hegseth allegedly giving direct orders to hold out heinous battle crimes, we are actually being reminded of...

Read more

New COVID vax formula produces antibodies nearly 3X longer

by ohog5
December 5, 2025
0
New COVID vax formula produces antibodies nearly 3X longer

Share this Article You're free to share this text below the Attribution 4.0 Worldwide license. Within the battle in opposition to COVID-19, accountable for greater than 1.2 million...

Read more

The Louisiana Department of Wildlife and Fisheries Is Detaining People for ICE

by ohog5
December 4, 2025
0
The Louisiana Department of Wildlife and Fisheries Is Detaining People for ICE

The Louisiana Division Of Wildlife And Fisheries (LDWF), sometimes accountable partially for overseeing wildlife reserves and imposing native looking guidelines, has assisted United States immigration authorities with bringing...

Read more

Cyber Monday video doorbell deal: Save 57% on Blink video doorbell, a Mashable Readers’ Choice Award winner

by ohog5
December 4, 2025
0
Cyber Monday video doorbell deal: Save 57% on Blink video doorbell, a Mashable Readers’ Choice Award winner

Save $40: The Blink video doorbell is presently on sale for $29.99 over at Amazon. That’s $40 off its common value or 57% off. Cyber Monday is right...

Read more

New Algorithm Lets Architects Design Stunning Curved Structures in Minutes

by ohog5
December 3, 2025
0
New Algorithm Lets Architects Design Stunning Curved Structures in Minutes

A brand new NURBS-based algorithm is revolutionizing gridshell design by enabling sooner, smoother, and extra versatile shape-finding. What as soon as required 90 hours of GPU time now...

Read more
Next Post
Do Osteoarthritis Treatments Actually Work? New Study Questions Efficacy

Do Osteoarthritis Treatments Actually Work? New Study Questions Efficacy

Leave a Reply

Your email address will not be published. Required fields are marked *

Related News

Secrets of Immune System Proteins: Unlocking Innovative Disease Treatments

Secrets of Immune System Proteins: Unlocking Innovative Disease Treatments

October 28, 2023
World News in Brief: Rights chief ‘horrified’ at deadly PNG violence, Lebanon-Israel ‘knife edge’, Sudan refugees suffer sexual violence | Department of Political and Peacebuilding Affairs – Department of Political and Peacebuilding Affairs

Turkish pro-Kurd MPs meet veteran Kurdish leader in Iraq – Hindustan Times

February 16, 2025
Jim Jordan Finally Forced To Testify Under Oath About OSU Sex Scandal

Jim Jordan Finally Forced To Testify Under Oath About OSU Sex Scandal

July 22, 2025

Browse by Category

  • Business
  • Health
  • Politics
  • Tech
  • World

Recent News

Trump to roll out sweeping new tariffs – CNN

Sudden business closures leave gift card holders in the lurch – Times Union

December 5, 2025
“This Chat’s Kind of Dead. Anything Going On?”

“This Chat’s Kind of Dead. Anything Going On?”

December 5, 2025

CATEGORIES

  • Business
  • Health
  • Politics
  • Tech
  • World

Follow Us

Recommended

  • Sudden business closures leave gift card holders in the lurch – Times Union
  • “This Chat’s Kind of Dead. Anything Going On?”
  • World Cup 2026 draw live updates: Latest news and everything you need to know about today’s ceremony – The Athletic – The New York Times
  • DHS Announces Arrests as Immigration Operation Underway in Minneapolis
No Result
View All Result
  • Home
  • World
  • Podcast
  • Politics
  • Business
  • Health
  • Tech
  • Awards
  • Shop

© 2023 ThisBigInfluence

Cleantalk Pixel
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?